三角形内角和教案 篇1
教学目标
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点
三角形的内角和
课前准备
电脑课件、学具卡片
教学活动
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、[篇6]
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
三角形内角和教案 篇2
教学内容:
p.28、29
教材简析:
本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。
教学目标:
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学准备:
三角板,量角器、点子图、自制的三种三角形纸片等。
教学过程:
一、提出猜想
老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)
二、验证猜想
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,结果相同吗?
三、完成想想做做
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
四、布置作业
第4、5题
三角形内角和教案 篇3
教学目标
⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:
检验三角形的内角和是180°。
教学难点:
引导学生通过实验探究得出三角形的内角和是180度。
教学环节:
问题情境与
教师活动:
学生活动媒体应用设计意图
目标达成
导入新课
一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?
我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?
三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)
由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系
二、动手操作,探究新知
1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数
把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?
我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
1.学生测量
2.汇报的测量结果
除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°
2、巩固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?
环节
三、应用所学,解决问题。
1、基础练习(课本第68页做一做)
在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。
2、判断题
(1)大三角形的内角和大于180度。()
(2)三角形的内角和可能是180度。()
(3)一个三角形中最多只能有一个直角。()
(4)三角形的三个内角分别可能是30度,60度,70度。()
3、求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。
四、总结:这节课你有什么收获?
三角形内角和教案 篇4
教学内容
人教版小学数学第八册第五单元第85页例5
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想―验证―结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
三、巩固练习,应用规律
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展练习,深化规律
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
三角形内角和教案 篇5
教学目标:
1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。
2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。
3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。
教学重点:
探索发现三角形内角和等于180并能应用。
教学难点:
三角形内角和是180的探索和验证。
教学过程:
一、创设情境,提出问题
师:大家喜欢猜谜语吗?
生:喜欢。
师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一几何图形))
生:三角形。
师:三角形中都有哪些学问?
生:三角形有三条边,三个角,具有稳定性。
生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。
生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。
生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。
生:三角形的内有和是180。
生:(一脸疑惑)
师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?
生:每个三角形的内角和都是180吗?
(根据学生的问题,在三角形的内角和是180后面加上一个?)
二、自主探索,实践验证
1、理解内角 师:什么是内角?
生:我认为三角形的内角就是指三角形的三个角。
师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。
2、理解内角和。
师:那三角形的内角和又是指什么?
生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。
师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。
3、实践验证
师:每个三角形的内角和都是180吗?用什么方法来验证呢?
生:量一量每个角的度数,然后加起来看看是不是180。
师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)
师:谁愿意把你的劳动成果和大家分享一下?
生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。
师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。
生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。
师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。
生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。
师:你发现了什么?
生:有的三角形的内角和是180,而有的三角形的内角和却不是180。
师:看来三角形的`内角和不一定是180。
生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。
生:都接近180就能说一定是180吗?
师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!
(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)
师:请每个小组选择一个代言人,和大家分享一下你们的智慧。
生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。
师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?
生:我们小组也有折的直角三角形,钝角三角形。
(其它的成员展示不同的三角形)
师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!
师:哪个小组和他们的方法不一样?
生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。
师:这个小组的方法简便,易操作,很好。
生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!
4、小结
师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?
生:没有。
师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。
三、巩固应用,加深理解
1、说一说每个三角形的内角和是多少度
师:(出示一个大三角形)这个大三角形的内角和是多少度?
生: 180
师:(出示一个小三角形)这个小三角形的内角和是多少度?
生:180
师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?
生:180
师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?
生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180
师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?
生:180
2、求下面各角的度数
师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?
(出)
生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三个三角形中,用180-20-45,B=115。
3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?
生:等腰三角形的两个底角相等,所以用180-70-70 4、
师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。
在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?
生:用量角器量一量
师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?
生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56
师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。
四、回顾总结,拓展延伸
师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?
生:我知道了三角形的内角和是180。
生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。
生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。
生:我可以用撕、拼、折等方法来验证三角形的内角和是180。
师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。
师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?
生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。
生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。
师:我们学习知识,必须知其然并知其所以然。
师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。
三角形内角和教案 篇6
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。
重点、难点:
经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。
三角形内角和是180°的探索和验证。
教学过程:
一、揭示课题
1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)
出示课件
2、提出问题,为后面做铺垫。
现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。
孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。
二、新授
1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)
指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)
师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?
(三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)
拼一拼,折一折
孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)
我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)
通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°
此时,这三个三角形还争吵吗?它们都心服口服了。
孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?
三、练习
1、抢答游戏(答对的给你的那一小组加一分)
①
这个三角形的内角和是多少度。
②
把这个三角形平均分成两个小三角形,每个小三角形是多少度。
③
这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?
④
三个小三角形拼成一个更大的三角形,它的内角和是多少度?
2、智慧角
3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)
4、知识扩展
其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)
出示课件
孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!
四、总结
任何一个三角形不分大小,不分形状,它们的内角和都是180°
三角形内角和教案 篇7
教学目标
知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。
过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。
情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。
重点难点
教学重点:
探究发现三角形的内角和是180度。
教学难点:
在猜想和验证三角形内角和的过程中发展空间观念。
教学过程
活动1【导入】理解内角、内角和概念
1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?
Q:结合谜面的信息来说一说三角形有什么特点?
2、介绍内角:这三个角都在三角形的里面,又叫内角。
Q:三角形有几个内角?
3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。
引出课题:今天我们就来研究三角形内角和。
活动2【活动】观察图形
1、观察图形的变与不变
ppt依次出示
Q:这是锐角三角形,什么是它的内角和?
出示直角三角形,它的内角和是指?
出示钝角三角形,内角和是指?
质疑:哪个三角形的内角和最大?
预设1:钝角三角形内角和大。(说想法)
预设2:一样大。(说想法)
预设3:180度。
小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。
(二)活动二:猜想内角和不变的度数
Q:这个一样的度数是多少?你是怎么知道的?
预设1:听说过,学过。
预设2:直角三角尺上三个角的度数和是180度。
预设3:等边三角形。
这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。
活动3【活动】测量验证
(一)思考量的方法和原因
过渡:你想怎么研究?(用量角器去量)
Q:谁来介绍介绍量的方法?
预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。
(二)动手测量
PPT:操作建议:
1、请你找到三角形的三个内角,用彩笔标序号1、2、3。
2、用量角器仔细测量后,记录角的度数。
3、列式计算出三角形内角和度数。
动手测量
(三)汇报交流:
学生1展示测量的过程。
Q:还有谁测量的这个锐角三角形,说一说?
追问:为什么同一个三角形内角和度数却不一样?
Q:你在测量的过程中遇到了什么困难?
Q:观察这些数据,虽然都不太一样,但是都很接近?
小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。
活动4【活动】拼角验证
(一)思考其它验证方法
Q:你还有其他的方法吗?
预设1:学生没有反应。
师引导:说到180度,你想到什么角?(平角)
预设2:撕拼法
Q:怎么把三个内角拼在一起?
(生不撕,教师帮助突破,撕下三个内角。)
Q:你能在投影上拼一拼吗?
预设3:折叠法
你的方法也很好,你们听懂了吗?一会儿可以试试。
预设4:描画法
Q:怎么描?你能演示一下吗?
其他同学观察他在做什么?
引语:刚才说的方法都很好,下面我们自己来试一试。
(二)动手拼一拼
操作要求:
1、请你用彩笔在纸上随意画一个三角形,并剪下来。
2、用彩笔标出三个内角。
3、尝试操作。
动手操作
(三)汇报交流
Q:你是怎么研究的?发现了什么?
(四)小结
刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。
活动5【活动】几何画板验证
引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。
师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。
观察:老师拉动一个顶点,什么变了?什么没变?
小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。
活动6【练习】基础练习
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一个锐角是40°,求另一个角?
3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?
4、拼三角形
师:两个180°不是360°吗?
小结:看来,组合以后的图形还要分清楚哪些是内角。
活动7【练习】拓展练习
(一)拓展练习
今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?
课件演示。
说说这节课你的收获?
三角形内角和教案 篇8
【教学目标】
1.学生动手操作,通过量、剪、拼、折的方法,探索并发现”三角形内角和等于180度”的规律。
2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】
探究发现和验证”三角形的内角和为180度”的规律。
【教学难点】
理解并掌握三角形的内角和是180度。
【教具准备】
PPT课件、三角尺、各类三角形、长方形、正方形。
【学生准备】
各类三角形、长方形、正方形、量角器、剪刀等。
【教学过程】
口算训练(出示口算题)
训练学生口算的速度与正确率。
一、谜语导入
(出示谜语)
请画出你猜到的图形。谁来公布谜底?
同桌互相看一看,你们画出的三角形一样吗?
谁来说说,你画出的是什么三角形?(学生汇报)
(1)锐角三角形,(锐角三角形中有几个锐角?)
(2)直角三角形,(直角三角形中可以有两个直角吗?)
(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)
看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习”三角形的内角和。”(板书课题:三角形的内角和)
看到这个课题,你有什么疑问吗?
(1)什么是内角?有没有同学知道?
内:里面,三角形里面的角。
三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.
(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。
(3)大胆猜测一下,三角形的内角和是多少度呢?
【设计意图】
创设数学化的情境。学生用已经学的三角形的特征只能解释”不能是这样”,而不能解释”为什么不能是这样”.这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。
二、探究新知
有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?
1、确定研究范围
先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?
只研究你画出的那一个三角形,行吗?
那就随便画,挨个研究吧?(太麻烦了)
怎么办?请你想个办法吧。
分类研究:锐角三角形,直角三角形,钝角三角形(贴图)
2、探究三角形的内角和
思考一下:你准备用什么方法探究三角形的内角和呢?
小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?
小组汇报:
(1)量一量:把三角形三个内角的度数相加。
直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?
(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。
能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?
(3)折一折:把三角形的三个角折下来,拼成了一个平角。
这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。
总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?
3、演绎推理的方法。
正方形四个角都是直角,正方形内角和是多少度?
你能借助正方形创造出三角形吗?(对角折)
把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°
再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°
这种方法避免了在剪拼过程中操作出现的误差,
举例验证,你发现了什么?
通过验证,知道了直角三角形的内角和是180度。
你能把锐角三角形变成直角三角形吗?
把锐角三角形沿高对折,分成了两个直角三角形。
一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)
通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?
通过刚才的计算,你发现了什么?(锐角三角形内角和180°)
钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°
通过验证,你又发现了什么?(钝角三角形内角和180°)
4、总结
通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)
5、想一想,下面三角形的内角和是多少度?(小–大)
你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)
【设计意图】
为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。
三、自主练习
1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)
2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)
3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)
师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。
4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?
【设计意图】
练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。
四、课堂总结
同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?
真了不起,同学们不仅学到了知识,还掌握了学习的方法。”在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的”,在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。
课后反思
《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出”三角形的内角和等于180°”.
本着”学贵在思,思源于疑”的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。”问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是”知其然而不知其所以然”.
为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有”扶”有”放”.做到了”扶”而不死,”伴”而有度,”放”而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。
教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:
1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。
2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。
教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。
三角形内角和教案 篇9
一、教材背景分析
《三角形的内角》是九年制义务教育人教版七年级下册第七章《三角形》的第二节内容。本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作、实践,说出“三角形的内角和等于180°”成立的理由,然后由浅入深,循序渐进,引导学生观察、实验、猜想、证明,逐步培养学生的逻辑推理能力。
二、教学目标设计
根据新课程标准的要求以及七年级学生的认知水平,我制定本节课的教学目标如下:
⑴了解三角形的内角;
⑵会用平行线的性质与平角的定义证明三角形的内角和等于180°;
⑶初步学会解决与角有关的实际问题;
⑷初步培养学生的说理能力;
根据对教材的分析和学情的分析我认为本节课的教学的重点与难点如下:
重点:了解三角形的内角和性质,学会解决简单的实际问题。
难点:证明三角形的内角和等于180°。
三、课堂结构设计
四、教学媒体设计
本节课我主要采用了常规手段和计算机辅助相结合的方式进行教学。
本节课的板书设计如下:
五、教学过程设计
(一)创设情境、激发情趣
爱因斯坦说过:“问题的提出往往比解答问题更重要”。上课开始,我设计了一个趣味性问题。在一个直角三角形里住着三个内角,老二对老大说:“你凭什么度数最大,我也要和你一样大。”老大说:“这是不可能的,否则我们这个家再也围不起来了…”。设置悬念让学生评理说理,为三兄弟排忧解难,自然导入三角形内角和的学习。
(二)动手操作、初步感知
提问:三角形内角和是多少?由于学生在小学学过这样的知识,可以预测到学生能轻松答出。紧接着提出第二个问题:有什么办法可以验证这个结论呢?学生可能会提出度量、拼图等方法,然后让每个学生画出一个三角形,并将它的内角剪下,试着拼拼看,再通过小组内部交流拼图的方法,最后教师在学生的基础上总结拼图方法。从而让学生从丰富的实践活动中发展思维的灵活性、创造性,为下一环节“说理”证明作好准备,使学生体会到数学来源于实践,同时对新知识的学习有了期待。
(三)实践说明、深入新知
教是为学服务的,教的最终目的是为了不教,教给学生学习方法,证明方法比单纯教给学生证明更有效。教师设问:从刚才拼图的过程中,你能说出证明:“三角形内角和等于180°”这个结论的正确方法吗?
⑴把你的想法与同伴交流。
⑵各小组派代表展示说理方法。
⑶请同学们归纳上述不同的方法。教师从中挑选一种方法进行讲解,其余方法让学生自己证明。通过小组讨论,让学生各抒己见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想-转化思想,为学好数学打下坚实的基础。
(四)巩固练习、拓展新知
我设计了一个问题:一个三角形中最多有几个直角、钝角,最多有几个锐角,最少有几个锐角。目的是为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系。
(五)启发诱导、实际运用
出示两个练习题,让学生进行巩固和加深。
通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段一个重要数学思想:数形结合思想,使学生巩固概念,加深认识,初步具备解决相关问题的能力,然后让小组交流不同的解法,培养学生思维能力。
六、教学评价
本节课通过让学生自主探究,合作学习来理解和掌握了三角形内角和定理,充分发挥了学生的主体意识,取得了良好的教学效果。
同时也让我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯。